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Abstract

In this paper we show that we can replace the assumption of con-

stant discount rate in the one-sector optimal growth model with the

assumption of decreasing marginal impatience without losing major

properties of the model. In particular, we show that the steady state

exists, is unique, and has a saddle point property. All we need is

to assume that the discount function is convex and has a uniformly

bounded first-derivative.
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1 Introduction

Since the seminal papers of Koopmans (1960) and Uzawa (1968), economists

have broadened the class of dynamic preferences to include recursive utility

functions to tackle the problems1 arising from the assumption of constant

discount rate. Lucas and Stokey (1984) assumed increasing marginal im-

patience to ensure stability. Epstein (1987, pp.73-74) gave three reasons

why employing the assumption of increasing marginal impatience is justified.

Most studies, including the phase diagram analyses of the optimal growth

models by Chang (1994, 2004) and Drugeon (1996), have focused on this

increasing marginal impatience case.

The problems with decreasing marginal impatience are, as noted in Ep-

stein (1983, p.140), that in deterministic models there exist many steady

states and that some of them are locally unstable. The finding of “division

of countries” by Magill and Nishimura (1984) is often cited as a reason to

assume increasing marginal impatience. Specifically, Magill and Nishimura

found that if the pure rate of time preference “decreases sufficiently rapidly”

(p.281), then there exists a critical level of capital that separates the rich

countries from the poor countries in such a way that the poor countries re-

main at subsistence, while the rich countries have permanent development.

1For example, Hicks (1965) argued that successive consumption units are supposed to
be complementary, but an additively separable utility function implies that the marginal
rate of substitution between lunch and dinner is independent of the type of breakfast one
had that morning or expects to have the next morning. See Wan (1970, p.274). Additive
separability also blurs the distinction between risk aversion and intertemporal substitution.
See, for example, Duffie and Epstein (1992). Finally, additive separability has a peculiar
long-run implication. Specifically, when there are heterogeneous agents, then, in the long
run, the most patient consumer would own all the capital, while all other agents consume
nothing and pay back their debts with all their labor income. See Becker (1980).
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This finding, however, begs a question: What would happen to growth theory

if the decrement in the pure rate of time preference were uniformly bounded?

Das (2003) demonstrated that a saddle-point steady state could be con-

sistent with decreasing marginal impatience, using phase diagram analysis.

Unfortunately, her analysis is incomplete and there is a technical error in the

phase diagram analysis. These will be explained in the text. Most important,

as pointed out in Lucas and Stokey (1984, p.169), the purpose of studying

recursive utility is to see how far we can relax the assumption of convenience,

namely the assumption of constant discount rate, without losing convenience.

Professor Das offered no economic interpretation, other than mathematical

necessity, for the required stability condition. Therefore, it is not clear what

is the value added of Das (2003) to the literature. As we will show later, her

stability assumption would actually create some inconvenience.

This paper studies the existence, the uniqueness, and the stability issue

of one-sector optimal growth with decreasing marginal impatience, following

the phase diagram analysis of Chang (1994). To accomplish our goal, we

need only to impose an additional restriction on the discount function, while

keeping the usual assumptions of preferences and technologies employed in

the constant discount rate case. Specifically, we need to assume that the dis-

count function is strictly convex and that the slope of the discount function

at zero consumption is bounded from below. Henceforth, the latter condi-

tion is referred to as the “bounded slope” assumption. The convexity and

the bounded slope assumption of the discount function together imply that

the slope of the discount function is uniformly bounded. A constant dis-

count function can obviously be regarded as its limiting case. In so doing,
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we have extended the scope of growth theory without creating unnecessary

inconveniences.

Under this bounded slope assumption, we show that the steady state of

optimal growth with decreasing marginal impatience exists and is unique.

Furthermore, the steady state has the usual saddle point property. Recall

that, in the constant discount rate case, the curve corresponding to the steady

state of consumption is a vertical line in the phase plane. We show that, in the

decreasing marginal impatience case, the curve corresponding to the steady

state of consumption is obtained from “bending” the upper and lower parts

of a vertical line rightward so that it is upward sloping in the upper part and

downward sloping in the lower part. The upper part of the curve is more

like a bell-shaped curve than a C-shaped curve because it is asymptotic to

another vertical line. This steady state retains all qualitative properties of

the steady state in the constant discount rate case.

The differences between the case of decreasing marginal impatience and

the case of increasing marginal impatience are in the derivatives of the dis-

count function. Borrowing the results from Chang (1994), we show that the

stability results in those two cases are “mirror images” of each other.

Since the decreasing marginal impatience case is a “mirror image” of the

increasing marginal impatience case and conversely, and since the constant

discount rate case is the limit of either case, we conclude the paper with

a unifying presentation that contains all three cases in a single diagram.

It makes clear the effects of monotonic marginal impatience, in comparison

with a constant discount rate, on the steady state consumption and steady

state capital. It also makes a clear statement about the stability analysis of
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monotonic marginal impatience and its saddle point property.

2 The Model

The model of optimal growth with decreasing marginal impatience is similar

to the model of increasing marginal impatience of Chang (1994). The major

difference is in the presentation of the bounded slope assumption.

The law of motion is the standard Solow equation

k̇ = f (k)− c− nk. (1)

The per capita production function f (k) is assumed to be of class C2 (twice

continuously differentiable), strictly increasing, strictly concave, satisfying

the Inada conditions:

f (0) = 0, lim
k→0

f
0
(k) =∞, and lim

k→∞
f
0
(k) = 0.

The objective function is Z ∞

0

D (t)U (ct) dt, (2)

where U (c) is the instantaneous utility function, which is of class C2, strictly

increasing and strictly concave in c and

D (t) = exp

½
−
Z t

0

δ (cs) ds

¾
, δ (cs) > 0, (3)

is the discount factor at time t. We shall refer to δ (c) as the (instantaneous)

discount function.

Clearly, D (t), which assumes values in (0, 1], depends on the underlying

consumption path {cs : s ≤ t}, and is decreasing in time because

D
0
(t) = −D (t) δ (ct) < 0.
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By definition, D (0) = 1 and D
0
(0) = −δ (c0) < 0. In the classic case of a

constant discount rate, i.e., δ (ct) = δ, a constant, we have D (t) = e−δt with

D
0
(t) = −D (t) δ.
What distinguishes the case of increasing marginal impatience from the

case of decreasing marginal impatience is the functional structure of δ (c).

By increasing marginal impatience we mean δ
0
(c) > 0, and by decreasing

marginal impatience we mean δ
0
(c) < 0. In the case of decreasing marginal

impatience, we also assume δ (0) = b > 0 and δ
00
(c) > 0 so that δ (c) is

defined for all c ≥ 0. We assume that δ (c) is asymptotic to the horizontal
axis δ = 0 so that

0 < δ (c) ≤ b. (4)

Then the optimal growth problem with decreasing marginal impatience is

formulated as

max
{ct}

(2) , s.t. (1) . (5)

It is standard to verify that the value function of (5), in current value form,

is independent of the initial time, and depends only on the initial capital-

labor ratio. Hence, we denote it by J (k). For the moment, we assume

U (c) ≥ 0 so that J (k) ≥ 0. The Bellman equation2 for problem (5) is

0 = max
c

n
U (c)− δ (c) J (k) + [f (k)− c− nk] J

0
(k)
o
. (6)

The first-order condition of (6) is

U
0
(c)− δ

0
(c) J (k)− J

0
(k) = 0, (7)

2The method of deriving the Bellman equation, the costate equation, and the Euler
equation is standard in the literature. See, for example, Chang (1994, 2004). The stochas-
tic version of the Bellman equation for this class of objective functions is derived in Krylov
(1980, p.25) or Chang (2004).
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and the second order sufficient condition is

U
00
(c)− δ

00
(c)J (k) < 0. (8)

The second order condition (8) is clearly satisfied because J (k) ≥ 0.
Let the costate variable be p = J

0
(k) , which is the shadow price of k.

This shadow price

p = U
0
(c)− δ

0
(c)J (k)

is clearly positive since J (k) ≥ 0. Then, the costate equation is

ṗ = −p
h
f
0
(k)− n− δ (c)

i
, (9)

which corresponds to equation (12) in Das (2003). Substituting

p = U
0
(c)− δ

0
(c)J (k)

into (9), we have the Euler equation

b (k, c) ċ = f
0
(k)− n − δ (c)− δ

0
(c) [f (k)− c− nk] , (10)

where

b (k, c) = −U
00
(c)− δ

00
(c)J (k)

U 0 (c)− δ
0
(c) J (k)

.

Equation (10) corresponds to equation (15) [after applying her equation (23)]

in Das (2003).

The sign of the numerator of b (k, c) is the same as the second order suf-

ficient condition (8), which is negative. The denominator of b (k, c) is the

shadow price p, which is positive. Therefore, b (k, c) > 0 and the Euler equa-

tion (10) is nondegenerate. Notice that the sign of the change in consumption

(the sign of ċ) is independent of the utility function U (c).
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3 Stability Analysis

To study the phase diagram analysis, we focus on the pair of equations (1) and

(10) in the (k, c)-plane. Let
_

k be the maximal sustainable capital-labor ratio,

i.e., f
³_
k
´
= n

_

k. We can therefore restrict our discussion to the compact

interval
h
0,
_

k
i
.

As discussed in the introductory section, a uniform bound on the slope

of the discount function may be a candidate for stability of optimal growth

with decreasing marginal impatience. Since δ (c) is convex, a lower bound

on δ
0
(0), or an upper bound on

¯̄̄
δ
0
(0)
¯̄̄
, will be sufficient for a uniformly

bounded δ
0
(c).

Formally, let

k1 =
³
f
0
´−1

(n + b) =
³
f
0
´−1

(n + δ (0)) ,

and

k2 =
³
f
0
´−1

(n) =
³
f
0
´−1 ³

n+ lim
c→∞

δ (c)
´
.

Since b > 0, we have k1 < k2.

Bounded slope assumption. Assume

−δ0 (0) ≤
µ
1

b

¶
min

k∈[k1,k2]

h
−f 00 (k)

i
.

The interval [k1, k2] is a compact set and therefore the minimum exists

and is finite. The upper bound is given by the exogenous parameters n, b,

and the production function f (k), and nothing else. In other words, it is the

population growth rate, the production technology and the bounds of δ (c)

that determine the lower bound for δ
0
(0). In particular, if f

00
(k) is mono-

tonic, then mink∈[k1,k2]
£−f 00 (k)¤ is simplified to min©−f 00 (k1) ,−f 00 (k2)ª.
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3.1 Steady State

The steady state, if it exists, is denoted by (kd, cd). By definition, (kd, cd)

satisfies k̇ = ċ = 0, i.e.,

f (k) − c− nk = 0, (11)

and

f
0
(k)− n− δ (c) = 0. (12)

The curve defined by (11), denoted by L1, is of inverted “U” shape with

k-axis intercepts 0 and
_

k, which is the same as the constant discount rate

case (and increasing marginal impatience case as well).

The curve defined by (12), denoted by L2, is upward sloping, i.e.,

dc

dk
=

f
00
(k)

δ
0
(c)

> 0,

because f
00
(k) < 0 and δ

0
(c) < 0. The k-axis intercept (c = 0) of the curve

L2 is k1. This means that L2 is not defined for k < k1 because δ (c) ≤ b.

For k ≥ k2, we have f
0
(k) − n ≤ 0, which implies that δ (c) ≤ 0 if (12) is

satisfied. In other words, L2 is not defined on k ≥ k2 either. In summary, L2

is defined only on [k1, k2), and on which 0 < f
0
(k)− n ≤ b.

As k approaches k2 from the left, f
0
(k)→ n. Along the curve L2, δ (c) =

f
0
(k) − n → 0, and therefore, c → ∞. This observation says that L2 is

asymptotic to the vertical line k = k2. This asymptotic property implies

that the curve L2 must cross L1 at least once, i.e., a steady state always

exists.

To show the uniqueness of the steady state, it suffices to show that the

two curves L1 and L2 cross each other only once. Since 0 < f
0
(k) − n ≤ b
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on [k1, k2), we have, for any c,

−δ0 (c)
h
f
0
(k)− n

i
≤ −δ0 (c) b, for all k ∈ [k1, k2).

The above inequality remains valid for k = k2 because f
0
(k2) = n. For

any c > 0, we have δ
0
(0) < δ

0
(c) < 0 because δ

00
(c) > 0. It follows that

−δ0 (c) b < −δ0 (0) b. Then the bounded slope assumption implies that, for
any c > 0,

−δ0 (c)
h
f
0
(k)− n

i
< −f 00 (k) , for all k ∈ [k1, k2] . (13)

Since (13) is valid for all c > 0, it is valid when c = δ−1
¡
f
0
(k)− n

¢
with

k ∈ [k1, k2), i.e., as we move along L2. In this case, we have

f
0
(k)− n <

f
00
(k)

δ
0 ¡
δ−1 (f 0 (k)− n)

¢ .
This inequality says that the slope of the curve L2, f

00
(k) /δ

0
(c), is strictly

greater than the slope of the curve L1, f
0
(k)−n, at any point in the interval

[k1, k2). This makes the second crossing (including tangency) of the two

curves impossible.

The unique intersection of the two curves L1 and L2 defines the steady

state (kd, cd), where kd ∈ (k1, k2). That is, the steady state is in the increasing
section of the L1 curve. See Figure 1. In summary, we have

Proposition 1 Under the bounded slope assumption, the steady state of op-

timal growth with decreasing marginal impatience exists and is unique.

Some comparative dynamics can easily be obtained. A decrease in the

population growth rate, n, “expands” the curve L1 and shifts the curve L2
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to the right as shown in Figure 2. Steady state consumption and capital

are unambiguously increased. This result is quite intuitive because there are

simply fewer people to feed and to share the existing capital. Similarly, a

Hicks-neutral technical progress, i.e., the new production technology is char-

acterized by Af (k), A > 1, would also expand the curve L1 and shifts the

curve L2 to the right as shown in Figure 2. Again, steady state consumption

and capital are unambiguously increased. This is also quite intuitive be-

cause such a technological change represents a scale effect on production and

hence on consumption. In both cases, the results resemble the comparative

dynamics of the optimal growth model with a constant discount rate.

3.2 Phase Diagram

Let the curve defined by ċ = 0 be L3 : R (k, c) = 0, where

R (k, c) = f
0
(k)− n− δ (c)− δ

0
(c) [f (k)− c− nk] . (14)

The location of the curve L3 can be determined as follows. First, we recognize

that L1 and L2 divide the first quadrant of the (k, c)-plane into four sectors:

A, B, C, and D. See Figure 3. In sector B we have R (k, c) < 0, because it

is the region above the curve L1 (i.e., f (k) − c − nk < 0) and below (or to

the right of) the curve L2 (i.e., f
0
(k) − n− δ (c) < 0). Therefore, the curve

L3 : R (k, c) = 0 cannot lie in this sector. Similarly, in sector C we have

R (k, c) > 0, because it is the region below the curve L1 (i.e., f (k)−c−nk >

0) and above (or to the left of) the curve L2 (i.e., f
0
(k) − n − δ (c) > 0).

Again, the curve L3 : R (k, c) = 0 cannot lie in this sector. Therefore, the

curve L3 : R (k, c) = 0 must be located in sector A (above L1 and L2) and
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sector D (below L1 and L2). When L3 is in sector A, we have k < k2.

Similarly, when L3 is in sector D, we have k > k1.

Next, we examine the behavior of the curve L3 in the strip S defined by

S = {(k, c) : k ∈ [k1, k2]} .

For all (k, c) ∈ S, we have

Rk (k, c) = f
00
(k)− δ

0
(c)
h
f
0
(k)− n

i
< 0,

using (13). Applying the implicit function theorem to R (k, c) = 0, k can be

written as a function of c, which has a derivative

dk

dc
= −Rc

Rk
=

δ
00
(c) [f (k)− c− nk]

f 00 (k)− δ
0
(c) [f 0 (k)− n]

. (15)

[Equation (15) corresponds to equation (A.23) in Das (2003) that computes

dc/dk.] Note that the implicit function theorem applies to all points of

R (k, c) = 0 in S. Inequality (13) implies that the denominator of (15) is

negative on S so that the sign of dk/dc depends only on the sign of the

numerator of (15). Since δ
00
(c) > 0, dk/dc has a sign opposite of k̇.

If (k, c) lies above L1, i.e., f (k)− c− nk < 0, then k̇ < 0 and hence k is

increasing in c. Similarly, if (k, c) lies below L1, i.e., f (k)− c−nk > 0, then

k̇ > 0 and hence k is decreasing in c. At (kd, cd), dk/dc equals zero. Thus,

the curve L3 in the strip S can be obtained from “bending” the upper and

lower part of the vertical line k = kd rightward so that it is upward sloping in

the upper part and downward sloping in the lower part. See Figure 4. Using

the expression of a “C-shaped” curve for L3 would be misleading because the

upper part of L3 is asymptotic to another vertical line k = k2. In fact, the
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upper part of L3 stays in the strip {(k, c) : kd ≤ k ≤ k2}, which is smaller
than S.

If the lower portion of L3 extends to the region
h
k2,

_

k
i
, the curve is still

downward sloping. This is because in this region, f
0
(k) ≤ n, which implies

Rk (k, c) < 0, and the implicit function theorem is still applicable. In any

event, the lower part of L3 stays in the strip
n
(k, c) : kd ≤ k ≤

_

k
o
.

Now we are ready to determine the vertical arrows of the phase diagram.

Since Rk (k, c) < 0 on [k1, k2], R (k, c) > 0 and hence ċ > 0 in the region to

the left of L3. Similarly, we have R (k, c) < 0 and hence ċ < 0 in the region

to the right of L3. In summary, the vertical arrows are as follows:

ċ < 0 if (k, c) is to the right of L3;

ċ > 0 if (k, c) is to the left of L3.

The horizontal arrows are the same as the constant discount rate case, i.e.,

k̇ < 0 if (k, c) is above the curve L1;

k̇ > 0 if (k, c) is below the curve L1.

Combining all arrows, a complete phase diagram is shown in Figure 4.

Proposition 2 The steady state of the optimal growth model with decreasing

marginal impatience is a saddle point.

3.3 The case of U (c) < 0

If U (c) < 0, then J (k) < 0. In this case we need to assume that the second

order sufficient condition (8) is valid and that

−δ
00
(c)

δ
0
(c)
≥ −U

00
(c)

U 0 (c)
. (16)
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The inequality (16) says that the degree of convexity of δ (c) is greater than

the degree of concavity of U (c). Then the shadow price of capital-labor ratio

satisfies

p = U
0
(c)− δ

0
(c)J (k) = U

0
(c)

"
1− δ

0
(c)

U 0 (c)
J (k)

#

≥ U
0
(c)

"
1− δ

00
(c)

U 00 (c)
J (k)

#
=

U
0
(c)

U 00 (c)

h
U

00
(c)− δ

00
(c)J (k)

i
> 0,

the last inequality is obtained from (8). It is then straightforward to verify

that the properties such as the existence, the uniqueness, and the saddle

point property of the steady state remain valid.

It is interesting to point out that, in the case of increasing marginal

impatience, (8) and p > 0 are automatic if U (c) < 0. But assumptions (8)

and (16) are required for p > 0 if U (c) ≥ 0. In that case, assumption (16)
simply says that δ (c) is more concave than U (c). See Chang (1994) and

Drugeon (1996) for details.

3.4 Comments on Das (2003)

For stability analysis, Professor Das assumed the following inequality

−f 00 (k) > −δ0 (f (k)− nk)
h
f
0
(k)− n

i
, for all k ∈ (0, k2], (17)

without offering an economic interpretation. Even though this inequality

resembles (13), they are quite different. The simplest explanation is that

inequality (17) is a one-dimensional condition (in k alone), but (13) is a

two-dimensional inequality (in k and c). To elaborate, let

g (k, c) = f
00
(k)− δ

0
(c)
h
f
0
(k)− n

i
. (18)

14



Inequality (17) is obtained by substituting c = c (k) = f (k) − nk into (18)

so that (17) can be written as g (k, c (k)) < 0. In so doing, the inequality

(17) is a condition along, and at best applicable to some neighborhood of,

L1 : c = f (k) − nk, not to the entire first quadrant of the (k, c)-plane. As

such, it is a local condition that cannot be used to analyze the shape of the L3

curve located away from the L1 curve in the (k, c)-plane. Therefore, Professor

Das’s description of the L3 curve, and therefore her stability analysis, is

incomplete.

Furthermore, the domain of (17) is (0, k2]. As we noted earlier, the curve

L2 is defined only on [k1, k2). As k → 0, we have f
0
(k)→∞ and inequality

(17) may fail. Similarly, inequality (17) may fail if δ
0
(0) is unbounded. Im-

posing conditions on f
00
(k), as k → 0, to tackle the problems just mentioned

would not be in the direction of relaxing the assumptions of convenience.

In addition, Das (2003) studied only the case with U (c) > 0. In contrast,

we extend the stability results to the growth models with decreasing marginal

impatience in which U (c) < 0.

The technical error in Das (2003) is in the stability analysis. The assump-

tion (17) ensures that inequality (13) is valid at the steady state (kd, cd), i.e.,

f
00
(kd)− δ

0
(cd)

h
f
0
(kd)− n

i
< 0 (19)

so that dk/dc is zero at (kd, cd). What Professor Das failed to recognize is

that the function g (k, c) is continuous in the (k, c)-plane. By continuity,

if g (kd, cd) > 0, then we must have g (k, c) > 0 in some neighborhood of

(kd, cd) . That is,

f
00
(k)− δ

0
(c)
h
f
0
(k)− n

i
< 0

15



in that neighborhood of (kd, cd). Therefore it is impossible for the denomi-

nator of (15) to change signs in that same neighborhood of (kd, cd). Instead,

Professor Das argued that the sign of the denominator of (15) is ambiguous.

This error led Professor Das to draw the conclusion that the curve L3 may be

of “S” shape as represented by her Figure 3. Most important, this inescapable

error is completely within Professor Das’s own model and framework.

4 All Cases Considered

It would be useful and instructive to compare all cases (decreasing marginal

impatience, constant marginal impatience, and increasing marginal impa-

tience) in a single framework and in the same diagram. To this end, we

borrow from Chang (1994) the results of the case of increasing marginal

impatience in which δ
0
(c) > 0 and δ

00
(c) < 0.

The curve defined by (12), denoted by L4, is downward sloping, dc/dk <

0, due to f
00
(k) < 0 and δ

0
(c) > 0. Its k-axis intercept is

k3 =
³
f
0
´−1

(n+ δ (0)) <
³
f
0
´−1

(n) = k2.

Therefore, the curve L4 intersects the curve L1 at its upward sloping portion

and the intersection is unique. Denote it by (ki, ci). See Figure 5. Notice

that, unlike the decreasing marginal impatience case, the steady state (ki, ci)

is uniquely determined without a bounded slope assumption.

The curves L1 and L4 partition the first quadrant of the (k, c)-plane into

four sectors. It can be verified that the curve L5 : R (k, c) = 0 is located in

sector B that is above the curve L1 and to the right of L4, and in sector C

that is below the curve L1 and to the left of the curve L4. See Figure 6.
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The phase diagram can be obtained similarly. Let the curve defined by

ċ = 0 be L5 : R (k, c) = 0, where R (k, c) is defined in (14). It is shown in

Chang (1994), using the strict concavity of δ (c), that R (k, c) < 0 on
h
k2,

_

k
i

for any c. Therefore, the location of the curve L5 is in the strip

{(k, c) : k ∈ [0, k2]} .

In this strip, f
00
(k) − δ

0
(c)
£
f
0
(k)− n

¤
< 0, i.e., (13) is always satisfied.

Notice that we do not need to assume a bounded slope condition in this case.

The phase diagram of optimal growth with increasing marginal impatience

is drawn in Figure 7.

The case of constant impatience δ (c) = δ is well-known. See, for example,

Intriligator (1971). In that case, the curve associated with ċ = 0 (or f
0
(k)−

n− δ = 0) is a vertical line, k = k0, where

k0 = f−1 (n+ δ) .

The phase diagram is reproduced in Figure 8.

To make meaningful connections among the three cases, we have to relate

the constant δ in the constant discount rate case to δ (0) in the other two

cases. In the increasing marginal impatience case, we assume δ (0) = δ

(i.e., k0 = k3) so that δ (c) > δ for all c > 0. In the decreasing marginal

impatience case, we assume δ (0) = b = δ (i.e., k0 = k1) so that δ (c) < δ for

all c > 0. Treated this way, the constant discount rate becomes the limiting

case of both decreasing and increasing marginal impatience growth models.

Figure 9 shows the relative position of the steady states among the three

cases. Figure 10 shows that the effect of changing from constant marginal

impatience to monotonic marginal impatience is simply to shift and bend
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the vertical line k = k0; the rest of the stability analysis essentially remains

unchanged.

5 Concluding Remarks

In this paper we show that we can replace the assumption of constant dis-

count rate in the one-sector growth model with decreasing marginal impa-

tience without losing any major properties of the model. In particular, the

major properties such as the existence, the uniqueness, and the saddle point

property of the steady state remain valid. All we need is to assume that the

discount function is convex and has a uniformly bounded first-derivative.

We also show that the phase diagram analysis of the optimal growth

with decreasing marginal impatience is “symmetric” to the phase diagram

analysis of the optimal growth with increasing marginal impatience, and that

the constant discount rate case can be regarded as the limiting case of either

model. It suggests that there is no longer any excuse to restrict ourselves

to the assumption of constant discount rate, at least for the continuous-time

one-sector optimal growth model.

The bounded slope assumption is closely related to the work of Magill and

Nishimura (1984). However, it is not always true that continuous-time results

would automatically imply discrete-time ones, nor the converse. See Chang

(1988, 2004) for discussion. The effects of the bounded slope assumption

on the discrete time models remain to be investigated. This is for future

research.
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Figure 2: Comparative Dynamics
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Figure 3: The curve L3 lies in region A and region D.
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Figure 4: The steady state is a saddle point
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Figure 5: Existence and uniqueness of the steady state (increasing marginal
impatience)
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Figure 6: The curve L5 lies in sector B and C
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Figure 7: The steady state is a saddle point (increasing marginal impatience)
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Figure 8: The phase diagram of constant discount rate case
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Figure 9: Comparison of the location of the steady states
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Figure 10: To change from constant marginal impatience to non-constant
one is to bend the vertical line k = k0
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